L’engagement des mathématiciens français dans les questions d’enseignement

dimanche 12 mai 2019
par  Dominique TOURNÈS

Une brève histoire de l’implication des mathématiciens français, depuis la Révolution, dans la conception des curriculums et dans la formation des enseignants.

Ces notes avaient été rédigées à l’origine pour les travaux préparatoires de la délégation française au congrès ICME-13 de Hambourg (24-31 juillet 2016).

Actuellement, en France, un Conseil supérieur des programmes est en train de redéfinir les programmes du lycée, après ceux de l’école élémentaire et du collège. Des mathématiciens, comme Cédric Villani, Charles Torossian, Étienne Ghys ou Xavier Buff, se sont fortement impliqués dans la conception des curriculums et dans des dispositifs variés destinés à revitaliser l’enseignement des mathématiques.

Dans la période précédente, pendant les années 2000, Jean-Pierre Kahane, mathématicien membre de l’Académie des sciences, avait présidé une Commission de réflexion sur l’enseignement des mathématiques, chargée de conseiller le ministre de l’Éducation nationale de l’époque. De nombreux mathématiciens avaient alors participé à cette commission ou avaient été auditionnés par elle.

L’engagement des mathématiciens français dans les questions d’enseignement – non seulement au niveau supérieur, mais aussi aux niveaux primaire et secondaire – n’est pas le propre de la génération actuelle ni de la précédente. Il s’inscrit en fait dans une longue tradition qui remonte à la fin du 18e siècle et qui s’est réaffirmée avec force à l’occasion de chaque grande réforme des programmes.

La période de la Révolution française

Pendant le siècle des Lumières, des « géomètres », comme on disait alors, avaient participé au projet encyclopédique de Diderot et d’Alembert dans l’intention de mettre leurs connaissances à la portée du plus grand nombre. Certains, comme Clairaut avec ses Éléments de géométrie (1741) et ses Éléments d’algèbre (1746), s’étaient même engagés dans l’écriture d’ouvrages élémentaires spécifiquement destinés aux « commençants », ouvrages s’appuyant sur des problèmes pratiques et allant du simple au composé conformément à l’ordre de l’invention.

Avec la Révolution française et la création de nouvelles institutions d’enseignement à tous les niveaux, depuis l’École polytechnique et l’École normale supérieure jusqu’aux écoles primaires, écoles centrales et écoles supérieures prévues par le Comité d’instruction publique sous l’influence de Condorcet, on assiste à un rapprochement entre la recherche mathématique et l’enseignement, à l’émergence d’un statut de mathématicien-professeur dans les institutions d’enseignement supérieur, et à la création d’un corps enseignant du primaire et du secondaire dont l’État doit soudain assurer la formation. C’est ainsi qu’en 1795, la Convention mobilise les plus grands mathématiciens de l’époque, Laplace, Lagrange et Monge, pour former 1400 citoyens venus de tout le pays, qui seront ensuite chargés de former à leur tour des enseignants dans les départements.

Les mathématiciens sont également incités à sortir de leur tour d’ivoire pour écrire les ouvrages d’enseignement nécessaires à la mise en œuvre des réformes. Condorcet donne l’exemple avec ses Moyens d’apprendre à compter sûrement et avec facilité (1798). Un peu plus tôt, dans le même mouvement, Legendre avait écrit ses fameux Éléments de géométrie (1794). Ces ouvrages, comme ceux de Clairaut cités plus haut, ont été réédités pendant tout le 19e siècle avec la recommandation du ministère de l’Instruction publique, et ont eu une influence considérable sur l’édition scolaire et les pratiques pédagogiques.


Le tournant du vingtième siècle, avec la réforme de 1902

Vers la fin du 19e siècle, après la défaite de 1870, la France prend conscience de son retard par rapport à l’Allemagne dans le domaine scientifique et dans la formation des élites savantes. C’est également le moment où la Révolution industrielle, qui a atteint la France en décalage avec l’Angleterre, a mis en évidence les faiblesses structurelles du pays et la nécessité de se doter d’une élite nouvelle pour l’industrie et le commerce. Afin de mieux préparer les savants et ingénieurs dont le pays a besoin, le Gouvernement envisage alors de créer dans les lycées un cursus moderne (sciences, langues vivantes) à égalité avec le cursus classique (latin, grec). Il s’agit en particulier de faire reconnaître les mathématiques comme une discipline scolaire formatrice de l’esprit tout autant que les humanités.

Pour atteindre cet objectif essentiel de la réforme de 1902, le ministre de l’Instruction publique, Georges Leygues, nomme une Commission de révision des programmes de sciences présidée par Gaston Darboux, doyen de la faculté des sciences de Paris, secrétaire perpétuel de l’Académie des sciences. La commission comprend notamment les mathématiciens Jules Tannery, Paul Appell et Gabriel Kœnigs.

Afin de défendre et de populariser la réforme, on fait monter au créneau d’autres mathématiciens de premier plan : c’est ainsi que Borel et Poincaré, dans des conférences pédagogiques destinées aux professeurs agrégés des lycées parisiens, suggèrent la création de laboratoires de mathématiques dans les établissements secondaires, et prônent le recours à l’intuition, au concret, à l’expérimental. Dans la foulée, une nouvelle vague de manuels scolaires écrits ou inspirés par des mathématiciens voit le jour.


La réforme des mathématiques modernes

Un troisième moment-clé important est à situer dans les décennies 1960 et 1970 avec la réforme dite « des mathématiques modernes ». Les mathématiques pratiquées dans l’enseignement primaire et secondaire ont alors peu évolué, et se trouvent en porte-à-faux vis à vis des nouveaux concepts et formalismes développés à l’université, que le groupe Bourbaki a structurés de façon emblématique. Des mathématiciens importants soulignent la nécessité d’une rénovation dans des ouvrages programmatiques comme L’Enseignement de la géométrie (1964) de Gustave Choquet, ou Algèbre linéaire et géométrie élémentaire (1968) de Jean Dieudonné. Dans les milieux scientifiques, économiques et politiques, un fort consensus se développe pour refonder l’enseignement des mathématiques de la maternelle aux facultés, mais aussi pour les démocratiser, les enseigner à tous, compte tenu de leur importance croissante dans le domaine économique et social.

En 1966, le ministre de l’Éducation nationale Christian Fouchet crée une Commission d’étude pour l’enseignement des mathématiques, présidée par André Lichnerowicz, professeur au Collège de France et membre de l’Académie des sciences. De nombreux mathématiciens s’impliquent, à un moment ou à un autre, dans cette commission à la composition variable et ouverte. On peut citer, entre autres, Gustave Choquet, Pierre Samuel, Charles Pisot et André Revuz. Autour d’eux, c’est une grande partie de la communauté mathématique, avec au premier rang l’APMEP (Association des professeurs de l’enseignement public), qui se passionne pour le débat. Des nouveaux programmes, en rupture radicale avec les précédents, sont rédigés pour tous les niveaux.

Comme pendant la Révolution, un important dispositif de formation des enseignants est mis en place, qui se traduit en particulier par la création des IREM (Instituts de recherche sur l’enseignement des mathématiques). À nouveau, les mathématiciens professionnels s’associent très largement à la rédaction de manuels scolaires et à la publication d’ouvrages spécifiques destinés à la formation des enseignants.


La période actuelle

La réforme des mathématiques modernes a certes donné lieu à des dérives et à des excès, heureusement régulés par la suite, mais elle a aussi permis la création des IREM, la naissance et le développement des laboratoires de didactique des mathématiques, et une évolution vers la situation actuelle dans laquelle notre communauté a trouvé un équilibre incarné par le dynamisme de la CFEM, structure fédératrice réunissant l’ensemble des forces vives françaises actives dans la recherche – qu’elle soit mathématique, épistémologique ou didactique – et dans l’enseignement de notre discipline à tous les niveaux.

Les changements de programmes sont désormais accompagnés de multiples initiatives destinées à transformer l’image des mathématiques (Fête de la science, Semaine des mathématiques, MathC2+, MATh.en.JEANS, rallyes mathématiques, etc.) et de dispositifs institutionnels volontaristes comme la Stratégie mathématiques de 2014 et le plan Villani-Torossian de 2018.

Dans le même esprit, l’année 2019-2020 sera une année des mathématiques invitant les mathématiciens du CNRS à se rapprocher des enseignants, notamment dans le cadre des nouveaux « laboratoires de mathématiques » créés dans les lycées, pour leur présenter les mathématiques actuelles comme une science vivante.


Références

  • Belhoste, Bruno, Les caractères généraux de l’enseignement secondaire scientifique de la fin de l’Ancien Régime à la Première Guerre mondiale, Histoire de l’Education, 41 (1989), 3-45.
  • Belhoste, Bruno, L’enseignement secondaire français et les sciences au début du XXe siècle. La réforme de 1902 des plans d’études et des programmes, Revue d’histoire des sciences, 43 (1990), 371-400.
  • Belhoste, Bruno, Les sciences dans l’enseignement secondaire français. Textes officiels, tome 1 : 1789-1914, Paris : INRP et Economica, 1995.
  • Belhoste, Bruno, Pour une réévaluation du rôle de l’enseignement dans l’histoire des mathématiques, Revue d’histoire des mathématiques, 4 (1998), 289-304.
  • Borel, Émile, Les exercices pratiques de mathématiques dans l’enseignement secondaire, Revue générale des sciences pures et appliquées, 14 (1904), 431-440.
  • D’Enfert, Renaud et Gispert, Hélène, Une réforme à l’épreuve des réalités. Le cas des « mathématiques modernes » en France, au tournant des années 1960-1970, Histoire de l’éducation, 131 (2011), 27-49.
  • Dhombres, Jean (dir.), École normale de l’an III. Leçons de mathématiques. Laplace-Lagrange-Monge, Paris : Dunod, 1992.
  • Gispert, Hélène, Pourquoi, pour qui enseigner les mathématiques ? Une mise en perspective historique des programmes de mathématiques dans la société française du XXe siècle, Bulletin de l’APMEP, 438 (2002), 36-46.
  • Gispert, Hélène, Mathematics education in France : 1800-1980, in Alexander Karp and Gert Schubring (eds.), Handbook on the History of Mathematics Education, New York : Springer, 2014, 229-240.
  • Kahane, Jean-Pierre (dir.), L’enseignement des sciences mathématiques. Commission de réflexion sur l’enseignement des mathématiques, Paris : Odile Jacob, 2002.
  • Poincaré, Henri, Les définitions générales en mathématiques, L’Enseignement mathématique, 5 (1904), 257-283.

Commentaires

Annonces

Prochains rendez-vous de l’IREM

Assemblée générale de l’APMEP-Réunion

- Mercredi 21 aout à 14h, lycée Évariste-de-Parny, saint-Paul.

Réunion de rentrée de l’IREM

- Mercredi 11 septembre 2019, 14h-18h, salle S23.6, PTU, Saint-Denis.


Brèves

Promenade singulière sur les points singuliers

vendredi 24 août 2018

Le livre promenades d’Étienne Ghys est disponible au téléchargement sur le site de l’ENS de Lyon. Largement illustré, ce livre consacré à un problème de Maxime Kontsevitch dont l’énoncé est plutôt élémentaire, est une promenade dans toutes les mathématiques, informatique comprise, et pourrait bien réconcilier informaticiens et mathématiciens !

Gerbert sur Youtube

lundi 13 août 2018

L’abaque de Gerbert possède désormais sa chaîne sur Youtube. Cela permet de se familiariser avec cet outil « innovant » pour l’apprentissage du calcul en cycles 2 et 3.

Nouveau record de nombre premier

mercredi 10 janvier 2018

Depuis fin 2017, le plus grand nombre premier connu est 277 232 917-1, il s’agit donc d’un nombre de Mersenne. Son écriture décimale comprend plus de 23 millions de chiffres. On notera que cela signifie que 77 232 917 est lui-même un nombre premier (résultat de Fermat).

Comprendre la logique Shadok

dimanche 30 avril 2017

Le meilleur cours de maths Shadok jamais réalisé...
Vidéo succulente ajoutée sur la canal des archives de l’INA le 26 avril 2017.

Décès de Kenneth Arrow

mercredi 15 mars 2017

La vedette de la théorie du choix social, bien connue de nos lecteurs, est décédée récemment, à l’âge respectable de 95 ans.

CHAOS : une aventure mathématique

vendredi 8 mars 2013

CHAOS est un film mathématique constitué de neuf chapitres de treize minutes chacun. Il s’agit d’un film tout public autour des systèmes dynamiques, de l’effet papillon et de la théorie du chaos. Tout comme DIMENSIONS, ce film est diffusé sous une licence Creative Commons et a été produit par Jos Leys, Étienne Ghys et Aurélien Alvarez.

Sur le Web : CHAOS

Rencontres Mondiales Du Logiciel Libre Décentralisées à Saint-Joseph

mardi 28 juin 2011

C’est une manifestation qui aura lieu sur 3 jours, avec de nombreux
ateliers et conférences sur les logiciels libres.
C’est vendredi 1, samedi 2 et dimanche 3 juillet.

C’est une première dans l’île, petite soeur des Rencontres Mondiales du Logiciel Libre nationales qui se déroulent chaque année.

Le site des rencontres réunionnaises se trouve ici :
http://2011.d.rmll.info/

Yves Martin y donnera une conférence d’introduction à la géométrie hyperbolique avec CarMetal, Alain Busser parlera de sa contribution en tant que développeur à CarMetal et Nathalie Carrié présentera un logiciel d’élaboration de connaissances.
De nombreux ateliers vous y attendent : Ruby, Smalltalk, Stellarium, Audacity, Freeplane et d’autres encore...

Il y aura un « repas du libre » le samedi soir, si certains veulent s’y
inscrire en ligne.
Il y aura même une conférence sur l’agriculture libre.

Merci de consulter le programme régulièrement pour plus d’infos.

Médailles Fields 2010

mardi 24 août 2010

Les noms des quatre médaillés Fields 2010 ont été dévoilés lors de la cérémonie d’ouverture du Congrès international des mathématiciens à Hyderabad :

- Elon Lindenstrauss
- Ngô Bào Châu
- Stanislas Smirnov
- Cédric Villani.

Sur le Web : ICM 2010

L’univers de Labomath sur Netvibes

dimanche 23 mai 2010

Quand on aime les maths et qu’en plus on est prof de maths, on ne peut pas passer à côté de cet univers mathématique créé par Kostrzewa Bruno, auteur de l’excellent site personnel Labomath.
Il vous donnera peut-être envie de vous créer votre propre espace sur Netvibes et votre propre univers mathématique.
Allez-voir, c’est hallucinant !
Nathalie Carrié

MathRider : L’outil ultime ?

mardi 24 novembre 2009

MathRider ressemble un peu à Maple (serveur de maths avec calcul formel). Mais il est plus léger (moins de fonctionnalités, on s’y retrouve donc mieux). Et il est conçu pour faire de la programmation...

Cette suite logicielle (dedans il y a 3d-Xplor, GeoGebra, LaTeX etc.) est multiplateforme et les exemples correspondent assez bien au programme actuel du Lycée. Le seul reproche qu’on puisse lui faire est que l’aide est en Anglais (mais de toute façon si on veut programmer on écrit souvent des « for » et des « while »). Le chapitre sur les branchements conditionnels fait appel à un vocabulaire assez original.

Le moteur de calcul formel, MathPiper, est celui qui a été incorporé à GeoGebra.

Statistiques

Dernière mise à jour

dimanche 14 juillet 2019

Publication

844 Articles
Aucun album photo
140 Brèves
11 Sites Web
145 Auteurs

Visites

192 aujourd'hui
623 hier
2891263 depuis le début
23 visiteurs actuellement connectés